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We consider a fourth order extension to MacCor-

mack's scheme. The original extension was fourth

order only for the invlscid terms but was second or-
der for the viscous terms. We show how to modify

the viscous terms so that the scheme is uniformly

fourth order in the spatial derivatives. Applica-

tions are given to some boundary layer flows. In

addition, for applications to shear flows the effect
of the outflow boundary conditions are very impor-

tant. We compare the accuracy of several of these
different boundary conditions for both boundary

layer and shear flows. Stretching at the outflow

usually increases the oscillations in the numerical
solution but the addition of a filtered sponge layer

(with or without stretching) reduces such oscilla-
tions. The oscillations are generated by insufficient

resolution of the shear layer. When the shear layer

is sufficiently resolved then oscillations are not gen-
erated and there is less of a need for a nonreflecting

boundary condition.

1 Basic Scheme

We consider the equation

ut + .f= = (b(z)u=)x (1)

The original scheme suggested by Gottlieb and

Turkel [5] was
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where

Az

with a second stage

÷2 + (7F'(1)-8F'(- I+

(2)

F_(_)= [-f_+ b_('_+I- _,)](_)
Az

This scheme issecond order in time and third

orderin space ifb(z) = O,but isonly second order

in space for the viscous term. We label the above
scheme FB since it has a forward difference on the

first stage and a backward difference in the second

stage. We next present the BF variant as

A_ _ 8F___+ 7F:)u(1) = u" + 6--_x(F:_2 -

F? : [-f_ +b_(_+_ - _)]_
Az

with a second stage

2 12Az

where

-- _i-1)](11.F_(1) = [-fi -t- bl (_i AZ

It is shown in [5] that by rotating these two

variants (i.e. alternating the order of the sweeps)



one can obtain fourth order accuracy in space when
b(z) : 0. However, one still obtains only second

order accuracy for the viscous terms. When the

Reynolds number is large then the dominant error

comes from the inviscid portion and the total error

is essentially fourth order in space. However, there

are cases when one wishes the spatial error to be

uniformly fourth order. We propose to accomplish

this by a small modification to (2). The forward

step is modified to :

F?: [-f_ + gl(-b_ + 8b__1- b__2)(_ -Az_-l)]_

A similar modification is used on the backward

differences of F. The stencil is now widened in

that point i in the predictor requires a centered
five point stencil as does the correctoz. This wider

stencil occurs only because of the coefficient b. If

b is a function only of x then this extended stencil

is not of any importance. For the Navier-Stokes

equations the function b is essentially the viscosity

jr. If one uses Sutheriand's law to compute # then
b is a nonlinear function and so one needs to store

data in artificial ceils for both the predictor and

cozrector at all boundaries. Thus, the way that

the scheme is now used is: update the solution at

all interior points. Use third order extrapolation

to define the fluxes at two artificial points outside

all the boundaries (see [1]). £pply the corrector
at all interior points and then again extrapolate to
the artificial points. At all solid boundaries the

boundary conditions are imposed before the ex-

trapolation. We stress that the extrapolation of

the fluxes is identical to using one sided differences

at the next update. The use of extrapolation rather

than one sided differences is done only to improve

the vectorisation of the algorithm. A Taylor series

expansion verifies that after rotating between the
two variants the scheme is now fourth order a£cu-

rate for both the hyperbolic and parabolic portions
of the scheme.

2 Boundary Conditions

One of the main difficulties in solving the Navier-

Stokes equations is the treatment of the outflow

boundary condition. We are mainly interested in

the viscous but high Reynolds number flow. The

condition needs to be specified corresponding to

an incoming acoustic wave. Fox supersonic flow
no boundary conditions are specified. For viscous

the flow the equations are no longer hyperbolic but

rather incompletdy parabolic. Fox subsonic flow

four conditions need to be specified (in two dimen-

sions), while for supersonic flow three conditions
need to be specified. Moreover, for the inviscid

(hyperbolic) case the needed boundary conditions

should be of Dirichlet type, i.e. a combination of

the dependent variables is specified. For the vis-

cous problem (parabolic) the specified boundary
condition can be either of Dirichlet type or Nen-

mann type (combinations of normal derivatives) or

a combination of both of these (Robin type). Many
codes use inviscid type boundary conditions. This

is based on the assumption that the flow in the

fax field is essentially inviscid because of the high

Reynolds number and the lack of physical bound-

ary layers.

To be more specific we need to consider dif-

ferent types of configurations. Fox boundary layer

flows one needs to distinguish between the portion

of the computational domain inside and outside the

boundary layer. Outside the boundary layer one

may be able to use inviscid type boundary con-

ditions. Inside the boundary layer the pressure

should be specified. Gustaffson [7] has shown that
the problem is also well posed ff one extrapolates

all the variables inside the boundary layer. For
external flow about an airfoil some codes use in-

viscid type conditions while others extrapolate all

the variables. Though the flow seems to be inviscid

in the far field nevertheless viscous effects persist

in the wake region. Thus, for example, there is a

velocity defect no matter how far one goes down-

stream and the integral of this is constant. Thus,

as one proceeds further downstreaan the defect lo-

cally gets smaller but is spread over a larger region.

This should a_ect the appropriate boundary condi-
tions. In this paper we will also consider free shear

flows. Here too viscous effects should be impor-
tant near the shear layer even far downstream. A

further complication that is most pronounced for
shear flows is that one does not know the solution

downstream and therefore one cannot impose any

type of Dizichiet boundary condition. Frequently,

there is a significant spreading of the shear layer
and so one does not know in advance even where

first question is whether the boundary treatment the shear layer will intersect the outflow boundary.
should be based on the Euler equations or the Navier- Furthermore, many theories expand the solution

Stokes equations. The difference between the two about a constant pressure in the far field and so

approaches is not just the type of boundary con- obtain a differential equation for the pressure de-

ditions but even the number of boundary condi- viation. For shear flows the pressure differs on the

tions that needs to be externally given. For invis- two sides of the shear and so the pressure is not con-
cid flow, when the flow is subsonic one boundary



stantin the far field except if the far field boundary

is extremely far away which is not computationally

practical. In other words, some of the nonreflect-

ing boundary conditions that have been proposed
in the literature are based on suppositions of the

form of the outgoing wave, e.g. a plane wave or

a spherical wave. However, these assumptions are
not valid for shear fows.

In spite of all these dangers we shall consider

characteristic-like boundary conditions at outflow

and so the number of boundary conditions win be

given by the inviscid theory. Nevertheless we shall
see that viscous effects are at least partially ac-

counted for.

.

2.

BCI: The simplest approach is to freeze

the characteristic variables normal to the sur-

face and to specify the incoming characteris-
tic variable and to extrapolate the outgoing

variables. For a one dimensional hyperbolic

system one can show that such a procedure

is well posed [61. This approach was used by

many authors in the past.

BC2: An improved version of this system is

to use differential equations that correspond
to these characteristic variables. Thus, for

the acoustic waves one needs differential equa-

tions for p_ ± pout where u is the velocity

component normal to the boundary. For the
shear wave we need vt where v is tangen-

tial to the boundary and finally pt - c_Pt for

the entropy variable. Whenever the bound-

ary condition is not specified but free to float

then the appropriate characteristic variable is

updated by the partial differential equation.
In order to avoid one sided differences the

fluxes are extrapolated outside the domain

to artificial points. Whenever the appropri-
ate combination is specified then we replace

this by specifying the combination of the time
derivatives. We can describe this as

Pt - pcut = Rt

Pt +pcut = R2

Pt - c2pt = Rs

vt _- R4

where P_ is determined by which variables

are specified and which are not. Whenever,
the combination is not specified that Ri is

just those spatial derivatives that come from
the Navier-Stokes equations. Thus, Ri con-

talns viscous contributions even though the

3.

4.

basic format is based on inviseid characteris-

tic theory. In implementing these differential

equations we convert them to conservation

variables p, m = pu, n = pv, E. Assuming an

ideal gas we then have

p, = (r - 1)(z, + --
u S + v 2

Pc -- urn, -- vnt )
2

mt upt
U t --

p P

nt vpt

P P

For subsonic flow, the immediate generaliza-
tion of the first method is to set Rt = 0

and to calculate R2, Rs, R4 from the Navier-

Stokes equations.

BC3: We next consider improvements for

the last boundary condition. These improve-

ments all leave R2, Ra, R4 as before from the

Navier-Stokes equations. The changes are all

to the incoming wave, R1. Giles [4] (and later

Kroner [10]) added some y (tangential) space

derivatives to the first equation. Thus the

equation for Ri is replaced by

p, - pout + upc% + v(pv - pcuy ) = 0

As before all the derivatives can be trans-

formed to derivatives of conservation vari-

ables.

BC4: Based on an asymptotic expansion of

the wave equation Bayliss and Turkel [2] de-

rived the following nonreflecting condition to

replace Rt.

Define d _ = x_ y2+ where M is the Math
number, z, V are the physical locations of

the boundary point relative to some source,

usually the inflow. Then

x UPt - pc_( t - uv_)

+cv_ - Mg"_pv + za _r

=0 (3)

As statedbeforeone frequentlydoes not know

p:o and so we shallsimply ignore the last

term in thisequation.

We note that thisequation does not have the

form ofthe firstequation for Rt, i.e.itisnot

an equation fora characteristicvariable.



5. BC5: For many cases the domain is much

longer than it is high. In this case we can
X

ignore y relative to z. Hence, we assume _ -_

v/1- l_lr2 _ _ 0. Then (3) simplifies to

With this simplification we get an equation
for the characteristic variable in a form simi-

lar to that proposed by Giles but not identical
with his condition.

Besides nonreflecting boundary conditions based

on the partial differential equation there are other

approaches to removing the difficulties associated

with far field boundaries. One popular approach is

to use a 'sponge layer'. The idea behind this ap-

proach is to introduce a domain between the region

of interest and the actual outflow boundary. In this
region one changes the differential equation in some

manner so as dissipate the energy of the system or

else prevent waves from traveling back into the do-

main. Since, the equations have been changed the

solution in this sponge layer has no physical rele-

vance. Hopefully, the solution in the rest of the do-
main is physically relevant and is not contaminated

with any false reflections from the boundary or the

sponge layer itself. In this approach the boundary
condition at the outflow boundary is irrelevant. It

may introduce perturbations but these are elimi-

nated in the sponge layer. For this approach to be

effective the sponge layer must be small relative to

the rest of the domain. A sponge layer approach
suggested by Colonins et. al [3] is to stretch the

grid and then filter the solution near the outflow
boundary. They used stretching throughout the

domain and applied filter near the outflow (in the

sponge layer). Karni [9] used sponge layer with
modified governing equations to accelerate conver-

gence to steady state.

3 Results

In this section we check on the improvements to

the 2-4 scheme presented above. We consider flow

over a fiat plate with M = 0.25, Re = 100 and
Pr = 0.72. We use a uniform cartesian mesh in

both the directions. In figure 1 we compare the

original method which is fourth order accurate only
for the inviscid terms but second order for the vis-

cous part with the improved method which is uni-

formly fourth order accurate. In this figure we plot
the n component of the velocity versus the nor-

malized y distance (7/). We consider two meshes.
The finer mesh is 400 × 80 and the coarser mesh

is 200 x 40. On the finer mesh both the original
scheme and the improved method give similar re-

sults. On the coarser mesh we clearly see the im-

provement that comes from using a fourth order
accurate treatment of the viscous terms.

We next consider a shear flow [8] modelling a

planar jet. All the boundary conditions used in

this study are based on the assumption of an out-

going plane wave expansion or else a circular wave

expansion. Neither of these assumptions is valid

for a jet geometry. Jet acoustics presents an addi-
tional difficulty for far field boundaries. The stan-

dard assumption is that the further out the artifi-

cial boundary is, the more accurate the results are
since it better simulates an infinite domain. How-

ever, in many cases the flow is spatially unstable

and as the length of the domain in the x dimen-

sion gets larger, the waves become more unstable

and grow until nonlinear behavior either saturates

the wave growth or else the code stops running be-

cause of an explosive nonlinear growth. Neverthe-

less, we shall use these boundary conditions as the
best available. The basic mesh is uniform in the x

direction and stretched in the y direction. The size

of the standard domain is 100 x 5 with 600 x 60 grid

points. We also consider the addition of a layer be-

yond z = 100. This additional grid which we call

a sponge layer is just 60 additional grid points be-

yond z = 100 until z = 133 with a stretched mesh.

We use a stretching proportional to z l"s . For ease

of comparison all figures use the same scaling and
show 160 radii in the axial and 5 radii in trans-

verse direction respectively. The figures are shown

after a nondimensional time of 500 which requires

about a hundred thousand time steps. The solu-

tion should be approaching a steady state.
We now consider a case where both the inner

and outer flows are subsonic, with the jet at M=0.8

and the outer flow at M=0.28. Hence,the nonre-

fiecting boundary conditions are applied along the

entire outflow line. The Reynolds number for this

flow is 10,200 based on the (planar) jet radius. We
compare the different boundary conditions and the

effect of sponge layer with and without filtering.

Figure 2a shows the contour plot of the vorticity

for the standard case with a finer mesh in the y di-

rection and an extended, though uniform, domain
in the x direction, so that the mesh is now 900 × 100

and z _ 150. We do not have a way of quantita-

tively comparing these solutions. Hence, we shall

content ourselves with qualitatively comparing the

solutions with this finer grid solution. We now con-

sider the outflow boundary conditions BC2 - BC5

respectively. In figures 2b - 2e we plot the vortic-
ity for the same physical case as before but with



the standard mesh, i.e. 600 x 60 and z _< 100.

The stretching in the y direction is stronger in the

finer mesh (figure 2a case) than the standard mesh

(fig. 2b-2e). All the boundary conditions on the
same mesh give similar solutions. Note, that in
all these cases the vorticity is visible much closer

to the inflow than when the outer boundary was

at z - 150. This demonstrates that for jet flows

the position of the outer boundary is more impor-
tant that the details of the nonreflecting boundary

condition. Among the various boundary conditions

the condition BC2 is slightly worse than the others.
It is our observation that the mesh density in the

y direction has a greater effect than the difference

between the various boundary conditions.
We next consider the introduction of the sponge

layer with the nonuniform increasing grid. In this

layer we add 60 grid points at the outflow bound-

ary to the previous 600 points. The mesh in the
sponge layer is stretched in the x direction using

the stretching function x l's. Stretching in y is the
same as the previous 600 × 60 grid cases. The physi-
cal mesh is now z < 150. Because of this stretching

the resolution of the vortices near the outer bound-

ary is severely reduced. Now, the effect of the dif-
ferent boundary conditions is negligible. Hence, in

figure 3 we plot the results obtained with the Giles

boundary condition. The vortex growth is slightly

delayed compared with figure 2.3 while the vortices
near z -- 100 are stronger. As expected the vortices

near the new outer boundary are washed out.

We next introduce the filter given below in last

160 points near the outflow boundary, i.e. the 60

points of the sponge layer and an additional 100

interior points. The filter is given by

-- .625f_ + .25(f_+_ + f_-l) - .0625(f_+2 q- f_-2)

This filter is 4th order accurate for a uniform mesh.

The filter function used by Colonius et. al. [3] has

a similar form but variable coefficients. We plot

the vorticity field for this case in figure 4. Again,
the numerical solution is independent of the far

field boundary condition and so in figure 4 we only

consider the case using the Giles boundary condi-
tion. We see that the stretched mesh coupled with

a larger domain delays the growth of the vorticities.

Hence, the beginning of the vortex growth is closer

to figure 2a than the previous cases. In the far field
the vortex growth has been completely destroyed

by the filtering. Hence, we only expect accurate
solutions for z < 100.

We finally consider a flow with the jet enter-

ing at M--1.5 while the outer region has an inflow
of M=0.53. Since the inner region has a super-

sonic flow at the exit all the variables axe extrap-

olated. The nonreflecting boundary conditions are

used only in the outer region. The Reynolds num-
ber based on the jet radius is about 6.37 x 10 s.

In figure 5a we consider the fine resolution grid of
900 x 100 as in the subsonic case. In this case there

is a much lower growth rate than in the subsonic
case and the vortices are barely forming at z : 150.

In figures 5b-5e, we compare the solutions of the

flow computed with the various outflow boundary
conditions BC2-5. If we reduced the mesh in the

y direction to 60 points, as in the subsonic case,
then the mesh is not fine enough to allow for vor-

tex growth. Hence, for the smaller domain we shall
consider a mesh of 600 x 100 with z <_ 100. In this

mesh we use the same stretching in the y direction

as in the subsonic cases (fig. 2b-2e). In this case

the Giles boundary condition seems to be slightly

worse than the others and generates more, false,

vorticity. On the other hand if we add a sponge

layer with a stretched mesh, as before, the only
reasonable solutions are given by the Giles bound-

ary condition. Adding the filter, as given above,
eliminated all the vortices and the solution is es-

sentially independent of the outer boundary treat-

ment. This is the best solution but is special for

this case. Hence, the supersonic case is less useful

for comparing treatments of the outer boundary.

All the boundary conditions considered here are
based on the inviscid case even though we compute

the full Navier-Stokes equations. Thus, we assume

that the viscosity is negligible at the outflow.

4 Conclusions

We have shown how to modify the fourth order ex-

tension of MacCormack's scheme so that it is uni-

formly fourth order accurate for both the inviscid

and viscous portions of the flux. This results in in-
creased accuracy for boundary layer type flows at

local unit Reynolds numbers of 1000 and lower.

We next compared several boundary conditions

for jet flow. In all cases it is best to use the par-
tial differential equations at the outflow boundary

itself. This can be accomplished by either using

one sided differences or else some extrapolation to

artificial points beyond the boundary. This extrap-

olation is equivalent to a one sided difference for-
mula within the differential operator solver. One

then takes combinations of these updated differ-

ences together with a radiation boundary condition
to form the final updated solution. The combi-

nation of given boundary conditions and equation
solvers is determined by characteristic theory for

the inviseid portion of the system. Nevertheless,



updating the complete equations introduces some
viscous information into the procedure.

Though the differences were not large, the best

results were obtained with the radiation boundary

condition of Giles or else the simplification of the

boundary condition of Bayliss and Turkel. An al-
ternative is to stretch the mesh at the outflow and

then to use the obtained solution only in the orig-

inal domain. This requites extra storage and com-

puter time but yields somewhat better solutions.
In this case all the boundary treatments at the out-

flow boundary give essentially identical results as

the major effect is the stretching of the mesh. In-

troduction of a filter in this sponge layer with the

expanding mesh smooths out all significant features
of the solution in the far field.
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Figure 2a: Subsonic jet simulation with high resolution in large domain
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Figure 2b: Subsonic jet with BC2 boundary condition
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Figure 2: Comparison of boundary treatments for subsonic flows
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